Article

Eric Jan C. van Putten
Eric Jan C. van Putten 4 September 2019

5 Practical Tips to Improve Your Data Quality

Data quality describes how well your data is able to serve its defined purpose, generally measured in terms of validity, accuracy, consistency, completeness and relevance. In other words, businesses know they have high-quality data when they are able to use it effectively to determine key business decisions. Data is considered “bad” or of “poor quality” when it’s inaccurate, which, unfortunately, is the norm rather than the exception in various industries.

Data quality describes how well your data is able to serve its defined purpose, generally measured in terms of validity, accuracy, consistency, completeness and relevance. In other words, businesses know they have high-quality data when they are able to use it effectively to determine key business decisions. Data is considered “bad” or of “poor quality” when it’s inaccurate, which, unfortunately, is the norm rather than the exception in various industries.

The state of data quality report reveals:

  • 33% of organizations believe they have a lot of bad data
  • 49% point to human error as the main cause of data inaccuracies
  • 89% of the C-suite admit bad data hurt their ability to provide excellent CX

In the United States, bad data cost the economy a whopping $3.1 trillion a year, while organizations’ annual loss on average is at $15 million.

If you’re also experiencing losses due to bad data, here are five tried-and-true tips to help you improve it:

Streamline your approach

Look at how data is collected, processed, stored, consumed and distributed to come up with a streamlined approach. You can choose to work with your existing setups, get completely new ones or create a hybrid solution. The idea is to come up with one that provides visibility into your data, the level of quality, its processes and ownership of said data.

Break down data silos

Having different and separate data silos discourages collaboration between internal and external stakeholders. This can be solved by having a central data repository where users and workflows are defined, and processes and progress are visible. This ensures you’re working with a single source of truth and not multiple sets of the same data.

Automate data onboarding

Building on the previous point, having vast amounts of data in different silos can lead to inaccuracy of published content, which leads to a poor customer experience. To bridge the gap among these silos, companies need to automatically onboard product information from legacy systems, data pools, suppliers, third-party content aggregators and other sources quickly and efficiently. This eliminates errors caused by manual entry and maintenance.

Enforce product data quality checks

Manual quality checks and maintenance is not efficient for large volumes of data. You need to set up data cleansing, standardization, normalization, classification and categorization rules to transform your data so that it is accurate, complete, consistent and up-to-date.

Utilize a version control system

Track and manage all versions of a dataset to create a seamless audit trail for full traceability. With this, you can get rid of redundancies and duplicates to ensure up-to-date, audit-compliant information at all times.

This blogpost has originally been written by May Arevalo

Please login or register to add a comment.

Contribute Now!

Loving our articles? Do you have an insightful post that you want to shout about? Well, you've come to the right place! We are always looking for fresh Doughnuts to be a part of our community.

Popular Articles

See all
Is Email Dead, Or Are We Just Bored With It?

Is Email Dead, Or Are We Just Bored With It?

In today's digital era dominated by social media, instant messaging, and collaboration tools, one question looms large: Does email still have a role to play? Some argue that it's on life support, while others...

Julia Herd
Julia Herd 22 November 2023
Read more
The Innovative Digital Marketing Strategies Leveraging AI

The Innovative Digital Marketing Strategies Leveraging AI

This article will assist digital marketers in grasping the advantages and disadvantages of employing artificial intelligence in their online marketing tactics. You will learn about the effects of AI on online...

joseph chain
joseph chain 17 October 2023
Read more
Marketing Emails vs Newsletters: What’s the Difference?

Marketing Emails vs Newsletters: What’s the Difference?

If anyone can clarify the difference between marketing emails and newsletters, it’s Alexander Melone, co-founder of San Francisco-based email marketing agency CodeCrew. But, as we’re about to find out, the distinction...

Alex Melone
Alex Melone 14 November 2023
Read more
The Impact of New Technology on Marketing

The Impact of New Technology on Marketing

Technology has impacted every part of our lives. From household chores to business disciplines and etiquette, there's a gadget or app for it. Marketing has changed dramatically over the years, but what is the...

Alex Lysak
Alex Lysak 22 September 2020
Read more
Customer-Centric Marketing: The Heartbeat of Modern UK Retail

Customer-Centric Marketing: The Heartbeat of Modern UK Retail

The UK retail scene, with its diverse offerings from luxe brands to quaint local stores, is witnessing a paradigm shift: The rise of customer-centric marketing. This isn’t just about selling; it’s about understanding,...

Andrew Addison
Andrew Addison 21 November 2023
Read more