Article

Eric Jan C. van Putten
Eric Jan C. van Putten 4 September 2019

5 Practical Tips to Improve Your Data Quality

Data quality describes how well your data is able to serve its defined purpose, generally measured in terms of validity, accuracy, consistency, completeness and relevance. In other words, businesses know they have high-quality data when they are able to use it effectively to determine key business decisions. Data is considered “bad” or of “poor quality” when it’s inaccurate, which, unfortunately, is the norm rather than the exception in various industries.

Data quality describes how well your data is able to serve its defined purpose, generally measured in terms of validity, accuracy, consistency, completeness and relevance. In other words, businesses know they have high-quality data when they are able to use it effectively to determine key business decisions. Data is considered “bad” or of “poor quality” when it’s inaccurate, which, unfortunately, is the norm rather than the exception in various industries.

The state of data quality report reveals:

  • 33% of organizations believe they have a lot of bad data
  • 49% point to human error as the main cause of data inaccuracies
  • 89% of the C-suite admit bad data hurt their ability to provide excellent CX

In the United States, bad data cost the economy a whopping $3.1 trillion a year, while organizations’ annual loss on average is at $15 million.

If you’re also experiencing losses due to bad data, here are five tried-and-true tips to help you improve it:

Streamline your approach

Look at how data is collected, processed, stored, consumed and distributed to come up with a streamlined approach. You can choose to work with your existing setups, get completely new ones or create a hybrid solution. The idea is to come up with one that provides visibility into your data, the level of quality, its processes and ownership of said data.

Break down data silos

Having different and separate data silos discourages collaboration between internal and external stakeholders. This can be solved by having a central data repository where users and workflows are defined, and processes and progress are visible. This ensures you’re working with a single source of truth and not multiple sets of the same data.

Automate data onboarding

Building on the previous point, having vast amounts of data in different silos can lead to inaccuracy of published content, which leads to a poor customer experience. To bridge the gap among these silos, companies need to automatically onboard product information from legacy systems, data pools, suppliers, third-party content aggregators and other sources quickly and efficiently. This eliminates errors caused by manual entry and maintenance.

Enforce product data quality checks

Manual quality checks and maintenance is not efficient for large volumes of data. You need to set up data cleansing, standardization, normalization, classification and categorization rules to transform your data so that it is accurate, complete, consistent and up-to-date.

Utilize a version control system

Track and manage all versions of a dataset to create a seamless audit trail for full traceability. With this, you can get rid of redundancies and duplicates to ensure up-to-date, audit-compliant information at all times.

This blogpost has originally been written by May Arevalo

Please login or register to add a comment.

Contribute Now!

Loving our articles? Do you have an insightful post that you want to shout about? Well, you've come to the right place! We are always looking for fresh Doughnuts to be a part of our community.

Popular Articles

See all
‘Complainer marketing’ – should we harness rage to promote brands?

‘Complainer marketing’ – should we harness rage to promote brands?

As marketers, we're always looking to get the best results for our clients. But should we highjack the emotions of their customers to do so? No, as I explain in this post, you're better than that.

Tom Chapman
Tom Chapman 18 July 2018
Read more
10 Factors that Influence Customer Buying Behaviour Online

10 Factors that Influence Customer Buying Behaviour Online

Now is an era where customers take the center stags influencing business strategies across industries. No business can afford to overlook factors that could either break the customer experience or even pose a risk of...

Edward Roesch
Edward Roesch 4 June 2018
Read more
Artificial Intelligence in Content Creation

Artificial Intelligence in Content Creation

In this article, we will talk about AI in the field of content generation. We will look at what artificial intelligence is in terms of content, what AIs are on the market, and how we can interact with them.

Polina Kedis
Polina Kedis 12 May 2023
Read more
7 reasons why social media marketing is important for your business

7 reasons why social media marketing is important for your business

Social media is quickly becoming one of the most important aspects of digital marketing, which provides incredible benefits that help reach millions of customers worldwide. And if you are not applying this profitable...

Sharron Nelson
Sharron Nelson 6 February 2018
Read more
How to Review a Website — A Guide for Beginners

How to Review a Website — A Guide for Beginners

Whether you're a startup or an established business, the company website is an essential element of your digital marketing strategy. The most effective sites are continually nurtured and developed in line with...

Digital Doughnut Contributor
Digital Doughnut Contributor 7 January 2020
Read more